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Aerobic oxidation with the combined use of phenylsilane
and a manganese complex catalyst was successfully applied to
the �,�-unsaturated carboxamide containing a C2-symmetrical
chiral auxiliary to afford the corresponding �-hydroxycarbox-
amide in good-to-high yield with high stereoselectivity.

As molecular oxygen is abundant and a ubiquitous oxidant
on the earth, much effort has been made to develop efficient
aerobic oxidation systems involving various metal complex cat-
alysts. From the view points of green chemistry as well as eco-
nomic considerations, catalytic aerobic oxidations have been de-
sired as some of the most environmentally benign systems and
various kinds of metal complex catalysts have been extensively
subjected to various types of aerobic oxidation such as epoxida-
tion,1 phenol synthesis,2 the Baeyer–Villiger reaction,3 alcohol
oxidation,4 dihydroxylations,5 etc. In biomimetic oxidation sys-
tems, the iron porphyrin complexes, e.g., P450 cytochrome,
were employed as the catalyst for aerobic oxidation combined
with appropriate reductants; e.g., NADPH or NADH.6 It was re-
ported that a variety of reductants such as 2-propanol,7 triethyl-
silane,8 phenylsilane,9 or aldehyde10 has been used with molecu-
lar oxygen for the oxidation of carbon–carbon double bonds to
obtain epoxides and hydrated products in good-to-high yields.
In the presence of a catalytic amount of a manganese(II) com-
plex with phenylsilane, the �,�-unsaturated carbonyl com-
pounds were regioselectively hydrated to afford the correspond-
ing �-hydroxy carbonyl compounds with molecular oxygen,9b

though the stereoselective aerobic hydration with reducing
equivalents still remains to be developed including the enantio-
selective and diastereoselective versions. Since optically active
�-hydroxycarboxylates can be found in various natural products
and also employed for their total synthesis, preparative methods
have been reported.11 The stereoselective oxidation of the corre-
sponding enolates has also been examined,12 however, few re-
ports were found about the direct synthesis of �-hydroxycarbox-
ylates with molecular oxygen. It was reported that the stereose-
lective �-hydroxylation of �-iodocarboxylates using a chiral
auxiliary, such as oxazolidinone or Oppolzer’s camphorsultam
derivative with molecular oxygen, occurred although a low ster-
eoselectivity was observed because of the high reactivity of the
enolate radical with molecular oxygen.13 As a part of our con-
tinuing effort to develop the stereoselective preparation of �-hy-
droxycarboxylates, we now report an aerobic oxidation system

that was successfully applied to the �,�-unsaturated carbox-
amides containing the C2-symmetrical chiral auxiliary to afford
the corresponding �-hydroxycarboxylates with high stereoselec-
tivity (Scheme 1).

Various chiral auxiliaries were examined for the oxidative
hydration of trans-2-hexenoates (Table 1).14 The reaction was
carried out at the atmospheric pressure of oxygen in the presence
of the 5mol% tris(dipivaloylmethanato)manganese(III) com-
plex15 and phenylsilane in 2-propanol at 0 �C. The optically ac-
tive oxazolidinones, such as (R)-4-phenyl- and (R)-4,5,5-tri-
phenyl-2-oxazolidinones, were used in the hydration to obtain
the corresponding �-hydroxycarboxylates but the diastereose-
lection was not observed (Entries 1 and 2). The camphorsultam
developed by Oppolzer16 was employed as a chiral auxiliary and
the diastereoselectivity was improved to 70:30 (Entry 3). The
C2-symmetrical chiral auxiliaries were then screened. trans-2-
hexenamide derived from (R,R0)-bis(1-phenylethyl)amine was
smoothly transformed into the corresponding �-hydroxycarbox-
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Scheme 1. Stereoselective preparation of �-hydroxycarboxyl-
ates.

Table 1. Various chiral auxiliaries for the stereoselective
oxidation of trans-2-hexenoates with molecular oxygena
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aReaction conditions : 5mol% of tris(dipivaloylmethanato)manga-
nese(III) complex (Mn(dpm)3), 0.5mmol of �,�-unsaturated car-
boxylate and 1.0mmol of phenylsilane in 2-propanol at 0 �C under
O2 atmosphere. bIsolated yield. cDetermined by 1HNMR analysis.
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amide with moderate stereoselectivity (Entry 4). The C2-sym-
metrical diphenyl-azetidine, -pyrrolidine, and -piperidine were
subjected to aerobic hydration, and it was found that the pyrro-
lidine-type auxiliary improved the diastereoselectivity to 86:14
(Entries 5–7). In a previous communication, the efficient prepa-
ration of the optically pure C2-symmetrical cyclic amines with
bulky aryl groups was reported.17 Thus, the obtained (2S,5S)-
2,5-bis(4-tert-butylphenyl)pyrrolidine or (2S,5S)-2,5-bis(2-
naphthyl)pyrrolidine were employed as C2-auxiliaries. The cor-
responding �-hydroxycarboxamide was obtained in 85:15 selec-
tivity (Entry 8). During the reaction of trans-2-hexenoate with
2,5-bis(2-naphthyl)pyrrolidine, molecular oxygen was stereose-
lectively introduced to afford the �-hydroxylated product (dia-
stereomer ratio 90:10, Entry 9).

Various alkenoates containing (2S,5S)-2,5-bis(2-naphthyl)-
pyrrolidine as a chiral auxiliary were successfully applied to
the stereoselective oxidative hydration reaction (Table 2). The
4-methyl-2-pentenoate was hydrated to the corresponding 2-hy-
droxycarboxyate in 78:22 selectivity (Entry 1). The 2-methyl-2-
pentenoate was smoothly converted to the 2-hydroxylated com-
pound without any contamination of the 3-hydroxylated product
(Entry 2). During the hydration reaction of the straight-chain al-
kenoates, the 2-hydroxylated products were obtained with high
diastereoselectivities. The long straight-chain alkenoate, such
as 2-undecenoate and 2-pentadecenoate, were converted to the
corresponding hydrates in 96:4 and 97:3 diastereoselectivities,
respectively. The absolute configuration of the obtained product
was determined by 1HNMR analysis along with the authentic
sample of �-hydroxycarboxamide derived from commercially
available (S)-leucic acid. These experiments revealed that (R)-
�-hydroxycarboxamide was obtained in the reaction of alke-
noate containing (2S,5S)-2,5-diarylpyrrolidine as the chiral aux-
iliary. It is assumed that the hydrogen atom of phenylsilane was
activated by the manganese(III) complex catalyst and added to
the �-position of the �,�-unsaturated carbonyl compounds to
generate the �-radical intermediate9b,18 stabilized by the carbon-
yl group. The �-radical intermediate would capture molecular
oxygen and then reduction with phenylsilane afforded the �-hy-

droxylated carboxylates. It was reported that the amide carbonyl
is located opposite to the �-radical in the �-(N,N-dimethylami-
docarbonyl)ethyl radical.19 Based on these considerations, mo-
lecular oxygen would approach the �-radical intermediate as de-
picted in Scheme 2 to afford (R)-hydroxycarboxylate corre-
sponding to the (S,S)-pyrrolidine auxiliary whereas another face
of �-radical would be effectively shielded by the bulky 2-naph-
thyl group.

It is noted that the �-hydroxycarboxamide was directly pro-
duced in high stereoselectivity and high yield from the �,�-un-
saturated carboxamide containing (2S,5S)-2,5-bis(2-naphthyl)-
pyrrolidine as the chiral auxiliary upon treatment with molecular
oxygen and phenylsilane in the presence of a catalytic amount of
the tris(dipivaloylmethanato)manganese(III) complex.
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Table 2. Various �,�-unsaturated compoundsa
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aReaction conditions: 5mol% of tris(dipivaloylmethanato)manga-
nese(III) complex (Mn(dpm)3), 0.5mmol of �,�-unsaturated car-
boxylate and 1.0mmol of phenylsilane in 2-propanol at 0 �C under
O2 atmosphere. bIsolated yield. cDetermined by 1HNMR analysis.
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Scheme 2. Plausible explanation for the stereoselection.
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